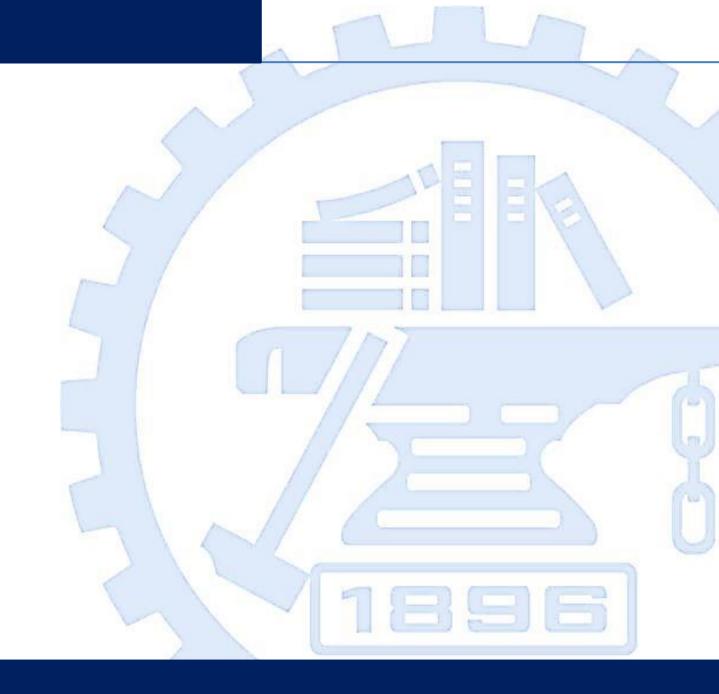


Yefei Chen, Jianbo Su


{marschen, jbsu}@sjtu.edu.cn

Shanghai Jiao Tong University, China

Content

- GoalDictionary LearingDeep Learning
- > Dict Layer
- > Experiment
- > Conclusion

Deep Learning

Adavantage

- > Strong ability for **feature extraction**
- End-to-end

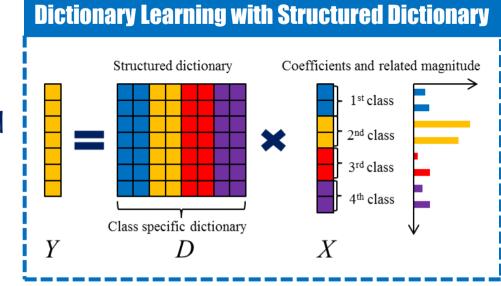
Disadvantage

Meaning of neural units being significant is unclear

Research Field of Deep Learning

- Vanishing of gradient
- Over-fitting
- Training time

Road Map

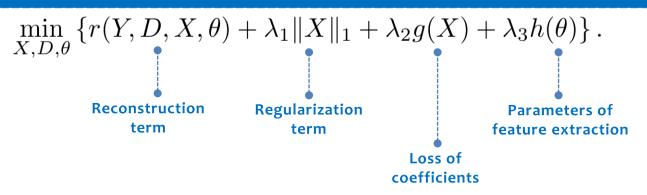

AlexNet 2013
DeepFace 2014
DeepID 2014-2016
VGGNet 2015
GoogleNet 2015
FaceNet 2015
ResNet 2016
LBCNN 2017

Dictionary Learning

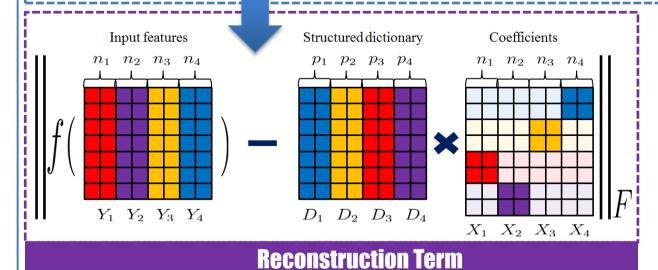
Adavantage

- Clear explanation for representation coefficients being significant
- Coefficients can be class specified and helpful for classification

Disadvantage


Rely on the feature extracted

Our goal is trying to inherit the property from Dictionary Learning and Deep Learning.



Dictionary Learning

Key Function of Dictionary Learning

$$r(Y, D, X, \theta) = \|f_{\underline{\theta}}(Y) - DX\|_F^2,$$

Main Improvements in Dictionary Learning

- Design the loss of coefficients
- Structure of Dictionary
- Design more powerful feature extraction method

Dictionary Learning

Michael Elad

VGG, Oxford & INRIA

Jean Ponce, INRIA

Zhang Lei, HKPU

Rama Chelleppa, Maryland

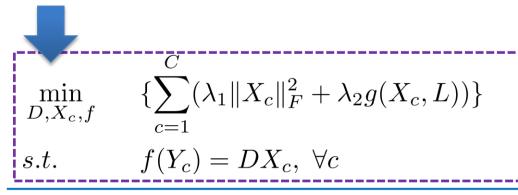
Jiwen Lu, Tsinghua

		Coefficients	Dictionary	Feature
	Road Map	COGINCIGINS	Structure	Extraction
1	KSVD 2006 ,Unsupervised learning			
	Linear Classification + KSVD 2008, Supervised learning with linear classification on coefficients	√		
&	SDL(Supervised Dictionary Learning) 2009 , Supervised learning with Softmax	√		
	DKSVD(Discriminant KSVD) 2010, First introduce the idea of structure dictionary		√	
	LC-KSVD(Label Consistent KSVD) 2011, Consistence of samples (labels)	√	4	
	TDL(Task-driven Dictionary Learning) 2012, Framework of Dictionary Learning	√	√	
	MFL(Meta Face Learning) 2010, Introduce structure dictionary into face recognition	√	4	
	FDDL(Fisher Discriminant Dictionary Learning) 2011, 2014, Fisher criteria	√	√	
	DGSR(Discriminative Dictionary for Group SR) 2014, Structure dictionary with group lasso	√	4	
	SDR(Sparse and Dense Hybrid Representation) 2015, Structure dictionary with low rank decomposition		✓	
,	SE(Sparse Embedding) 2012 , Framework of linear feature extraction and dictionary learning		4	4
	DRSR(Dimensionality Reduction for SR) 2010, Feature extraction and dictionary learning simultaneously	√	√	4
	JDDRDL(Joint Discriminative Dimensionality Reduction and Dictionary Learning) 2013	√	4	√
ıa	SFDL(Simultaneous Feature and Dictionary Learning) 2014,2017, Extension to nonlinear feature extraction	√	4	4
	BDDL(Bilinear Discriminant Dictionary Learning) 2014	√	√	4
	Deep Dictionary Learning(DDL) 2016,2017, Dictionary can be stack into deep network like DBN			

Content

- > Goal
- Dict Layer
 Relationship between DLs
 Dict Layer
- > Experiment
- > Conclusion

Relationship between DLs


- > Both can be deep stacked
- > Loss function g() can be identical
- Similar in mathematical

Deep Learning in ADMM Style

$$\min_{X^m,a^m,W_m} \quad \{\sum_{c=1}^C g(X_c^M,L)\}$$

$$s.t. \qquad X_c^m = W_m a_{,c}^{m-1},$$

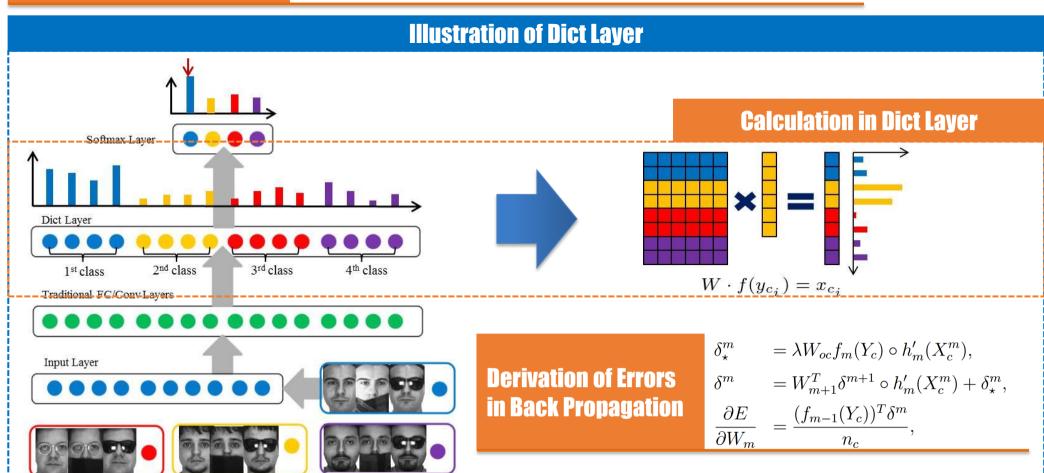
$$a_c^m = h_m(X_c^m), \ \forall m, \forall c$$

$$\min_{f,X^M} \quad \{\sum_{c=1}^C g(X_c^M,L)\}$$

$$s.t. \qquad X_c^M = f_M(Y_c), \ \forall c$$

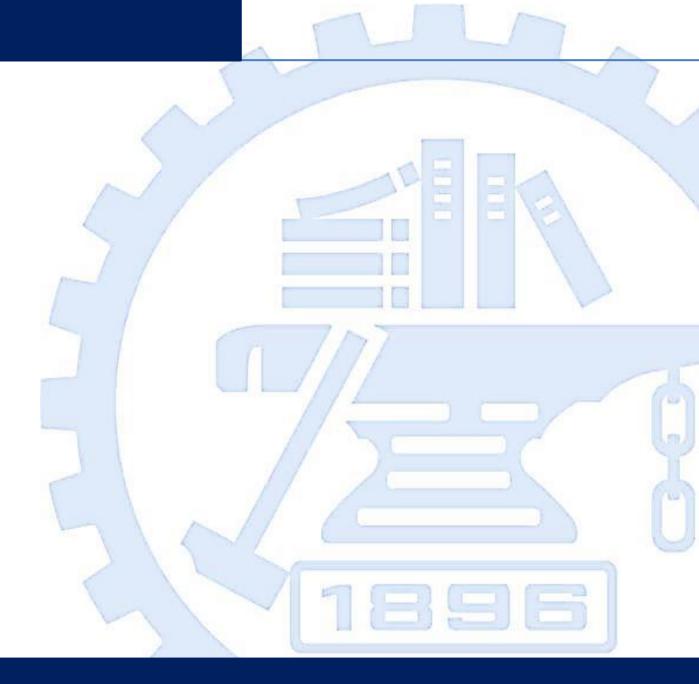
Simplified function of Dictionary Learning

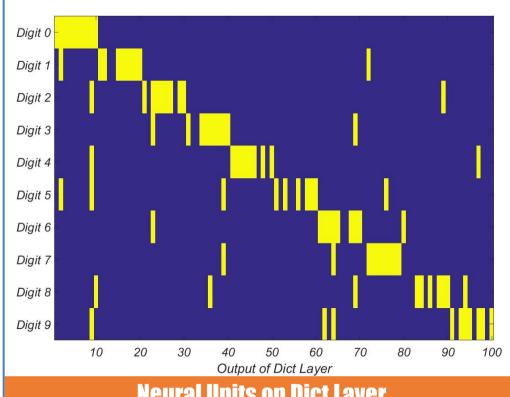
$$\overline{\min_{D,X,f} \left\{ \|f(Y) - DX\|_F^2 + \lambda_1 \|X\|_F^2 + \lambda_2 g(X,L) \right\}},$$

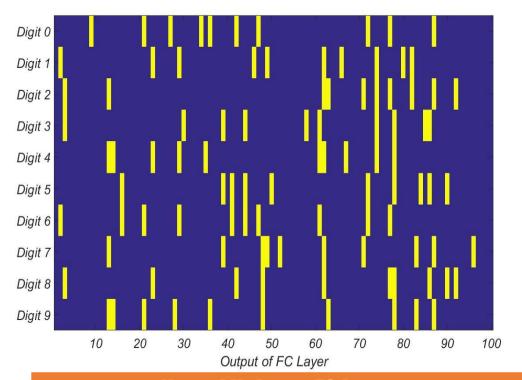

Our goal is trying to inherit the property from Dictionary Learning and Deep Learning.

Structured Dictionary in Deep Learning

Loss function of Deep Learning with Dict Layer


$$\min_{f} \left\{ \sum_{c=1}^{C} \left(g(f_M(Y_c), L) + \lambda ||W_{oc} f_m(Y_c)||_F^2 \right) \right\}.$$


Content


- > Goal
- > Dict Layer
- > Experiment
 Visualization result
 Face recognition result
- > Conclusion

Neural Units on Dict Layer

Neural Units on FC Layer

Visualization of hidden neural units on Dict Layer and FC layer. Distribution on Dict Layer is more equivalence and class specified.

Comparison on Dict Layer and FC Layer with LBCNN(CVPR2017)

SVHN:

80 convolutional filters

CIFAR-10:

100 convolutional filters
Only 12500 images are used for training

SVHN			
	Dict Layer	FC Layer	
300	5.52%	5.61%	
400	5.48 %	5.54%	
500	5.59%	5.55%	
600	5.53%	5.54%	

CIFAR-10			
Dict Layer	FC Layer		
16.65%	17.07%		
16.28 %	16.92%		
16.21%	16.83%		
15.96 %	16.87%		
	Dict Layer 16.65% 16.28% 16.21%		

Results on Face Recognition

	D.		Dict Layer		Layer
	Dims	Softmax	Cosine	Softmax	Cosine
	500	0.93±1.56%	0.81±1.36%	5.97±1.55%	16.37±1.36%
A	600	$0.80\!\pm\!1.51\%$	$0.79{\pm}1.60\%$	$5.67{\pm}1.03\%$	$16.27{\pm}1.25\%$
R	<u>700</u>	$0.76{\pm}1.51\%$	$0.69{\pm}1.31\%$	$5.63{\pm}1.23\%$	$16.25\!\pm\!1.47\%$
	800	$0.71 \pm 1.16\%$	$0.67{\pm}1.22\%$	$5.35{\pm}0.73\%$	$15.81{\pm}1.08\%$
	900	$0.67{\pm}1.17\%$	$0.60 {\pm} 1.10\%$	$5.17{\pm}0.90\%$	$15.24{\pm}1.32\%$
	1000	$0.69{\pm}1.21\%$	$0.59{\pm}1.06\%$	$4.90{\pm}0.90\%$	$15.29 \pm 1.35\%$

	ъ.		Dict Layer		FC Layer	
C	Dim	Softmax	Cosine	Softmax	Cosine	
M	340	3.61±0.18%	3.56±0.19%	9.17±0.31%	11.04±0.39%	
U	680	$3.62{\pm}0.18\%$	$3.49{\pm}0.16\%$	$8.58{\pm}0.35\%$	$11.21 {\pm} 0.49\%$	
P	1020	$3.55{\pm}0.22\%$	$3.43{\pm}0.22\%$	$8.24{\pm}0.37\%$	$11.04{\pm}0.33\%$	
10	<u>1360</u>	$3.67{\pm}0.18\%$	$3.49{\pm}0.20\%$	$8.04{\pm}0.33\%$	$11.20{\pm}0.42\%$	
E	1700	$3.65{\pm}0.19\%$	$3.47{\pm}0.16\%$	$7.86{\pm}0.39\%$	$11.15{\pm}0.33\%$	
	2040	$3.62{\pm}0.17\%$	$3.45{\pm}0.20\%$	$7.68{\pm}0.26\%$	11.24±0.35%	

E	Dime	Dict I	Dict Layer		FC Layer	
X	Dims	Softmax	Cosine	Softmax	Cosine	
t.	190	1.98±0.40%	1.75±0.41%	3.93±0.50%	4.96±0.25%	
Y	380	$1.90{\pm}0.44\%$	$1.75{\pm}0.57\%$	$4.22{\pm}0.58\%$	$5.72 \pm 0.79\%$	
A	570	$2.04{\pm}0.29\%$	$1.87{\pm}0.38\%$	$4.25{\pm}0.50\%$	$6.23{\pm}0.77\%$	
L	<u>760</u>	2.13±0.36%	$1.91{\pm}0.43\%$	$4.25{\pm}0.47\%$	$6.68{\pm}0.61\%$	
e	950	$2.21{\pm}0.36\%$	$1.91{\pm}0.35\%$	$4.53{\pm}0.54\%$	$7.10{\pm}1.16\%$	
В	1140	2.25±0.37%	1.93±0.39%	4.70±0.56%	7.32±0.95%	

Dict Layer is more powerful under cosine distance.

A good feature can make a simple classifier being powerful.

Results on Face Recognition

AR		
Method	Accuracy	
FDDL [130]	92.2%	
JDDRDL [141]	94.0%	
BDDL [143]	93.6%	
SFDL[145]	97.14%	
FC Layer	94.37%	
Dict Layer ¹	92.86%	
Dict Layer ²	99.24%	

EXI. Yal	EXI. Yale D		
Method	Accuracy		
FDDL [130]	94.4%		
MFL [133]	91.3%		
SFDL[145]	96.79%		
FC Layer	95.75%		
Dict Layer	97.87 %		

Evt Volo D

GMU PIE		
Method	Accuracy	
FDDL [130]	92.3%	
BDDL [143]	93.3%	
SFDL[145]	94.1%	
FC Layer	91.96%	
Dict Layer	96.33%	

Dictionary Learning is more useful on database with small category about 100. Nonlinear extraction is more powerful than linear extraction. Structure information is useful for Deep Learning.

Conclusion

Adavantage

- Each neural is class specified and designed for classification.
- Dict Layer can be viewed as an enhancement of FC Layer and can be used on any networks with FC Layer.
- A exemplar of introducing traditional method into Deep Learning.

Disadvantage

- Expansion of dimensionality with the growth of categories.
- Designed for situation where training categories and testing categories are identical.
- One more parameter is needed.

Dict Layer:A Structured Dictionary Layer

Yefei Chen, Jianbo Su

{marschen, jbsu}@sjtu.edu.cn

Shanghai Jiao Tong University, China